1. Warm-up. Let \mathbf{u} and \mathbf{v} be vectors in the plane.

- (a) What is the set of all vectors $s \mathbf{u} + t \mathbf{v}$ for $0 \le s \le 1$ and $0 \le t \le 1$?
- (b) What is the set of all vectors $\mathbf{u} + t\mathbf{v}$ for $t \in (-\infty, \infty)$?

In order to get started, it might be useful to pick a few values for s and t and graph the resulting vectors.

2. Curvature review.

- (a) What is $\mathbf{T}(t)$ and why is it called the unit tangent vector?
- (b) What is s(t), what does $\frac{d\mathbf{T}}{ds}$ represent, and why is it called the curvature vector?
- (c) Why does κ equal $\frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$ and what does it represent?

3. Radius of curvature.

Let $\mathbf{r}(t) = a\cos(t)\mathbf{i} + a\sin(t)\mathbf{j}$.

- (a) Find the velocity, speed, and unit tangent at time t.
- (b) Find the tangential (\mathbf{a}_T) and normal (\mathbf{a}_N) components of the acceleration vector \mathbf{a} at time t. Draw a graph illustrating your answers when $t = \pi/6$.
- (c) Find the curvature and the radius of curvature at time t.
- (d) How would your answers change if you chose a different value for t?

4. Curvature of a spiral.

Let $\mathbf{r}(t) = \langle e^t \cos t, e^t \sin t \rangle$.

- (a) Sketch the curve $\mathbf{r}(t)$ for t > 0.
- (b) Find the unit tangent vector $\mathbf{T}(t)$ at time t and sketch it when $t = \pi/3$. Does your answer agree with your sketch?

- (c) Calculate the acceleration vector \mathbf{a} at time $t = \pi/3$. Compute the normal and tangential components of the acceleration at time $t = \pi/3$. Verify that your answers are correct by showing that $\|\mathbf{a}\|^2 = a_T^2 + a_N^2$ at $t = \pi/3$.
- (d) Estimate the curvature κ at time $t = \pi/3$ based on your sketch. Then calculate it.
- (e) Find the equation of the osculating circle tangent to the curve.

5. Kiss my curve.

Consider $\mathbf{r}(t) = t \sin t \mathbf{i} + 3t \mathbf{j} + 2t \cos t \mathbf{k}$ near $t = \pi/2$.

- (a) Find parametric equations for the line tangent to the curve.
- (b) Find an equation for the plane containing the velocity vector and the acceleration vector.
- (c) Find the center of the osculating circle tangent to the curve.

6. † I'm lying to you, don't you think?

In the land of Smullyan, every inhabitant was either right-handed or left-handed; none of the inhabitants were ambidextrous. Moreover, what a right-handed person wrote with his right hand was true, and whatever they wrote with their left hand was false. The left-handed people were the opposite: Whatever they wrote with their left hand was true and whatever they wrote with their right hand was false. In other words, whatever a person wrote with their stronger hand was true and whatever they wrote with their weaker hand was false.

- (a) What statement could be written only by a left-handed person, and using either hand?
- (b) What statement could be written only by a left-handed person using his right hand?
- (c) What statement could be written only by a left-handed person using his left hand?

† Adapted from Raymond Smullyan's *The Riddle of Scheherazade and Other Amazing Puzzles*, Harcourt Brace & Company, 1997, pp. 94-95.