Work on problems that you most need practice on. If you are not confident on directional derivatives, tangent planes, or implicit differentiation, be sure to do problems 6 and 7. An asterisk (*) marks more challenging problems.

1. Quadric surfaces.

Sketch the following three-dimensional surfaces:

(a)
$$\frac{x^2}{1^2} + \frac{y^2}{2^2} + \frac{z^2}{3^2} = 1$$

(b)
$$x^2 + y^2 = \frac{z^2}{c^2}$$

(c)
$$z = x^2 - y^2$$

(d)
$$4x^2 - y^2 + 4z^2 = 4$$

For the last graph, explain how it differs from the graph of $9x^2 - y^2 + 9z^2 = 9$.

2. Chain rule for multiple variables.

Let $f(x,y) = e^{2x} \sin(xy)$ and assume that x and y are functions of s and t as given by x(s,t) = 2s - 3t and $y(s,t) = s^2 - t^3$. Find $\partial f/\partial s$ and $\partial f/\partial t$, expressing them in terms of s and t only.

3. Magnitude of gradient in polar coordinates.

Let z = f(x, y), where $x = r \cos \theta$ and $y = r \sin \theta$. Show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$

by using the chain rule to expand the right hand side.

4. Critical points of multivariable functions.

Back in calculus of one variable, a point x_0 was a critical point for f if $f'(x_0) = 0$. Assuming that x_0 was a critical point, if $f''(x_0) > 0$ then x_0 was a local minimum and if $f''(x_0) < 0$ then x_0 was a local maximum.

Are there similar rules for functions z = f(x, y)? What should be the criteria for a point x_0 to be a critical point? A local minimum or local maximum?

5. Laplace's equation.

A function of two variables that satisfies Laplace's Equation

$$f_{xx} + f_{yy} = 0$$

is said to be harmonic.

- (a) Write the equation $f_{xx} + f_{yy} = 0$ using ∂ notation.
- (b) Verify that $f(x,y) = x^3y xy^3$ and $f(x,y) = \ln(4x^2 + 4y^2)$ are harmonic.

(c) * Do you think it is possible for a harmonic function to have a local maximum? Why or why not?

6. Review of directional derivatives.

Let $f(x,y) = x^2 + y^2$ and let P be the point (-3,4).

- (a) Find the linear approximation of f at P.
- (b) Find the directional derivative of f at the point P in the direction toward the origin.
- (c) Find a unit vector in the direction in which f increases most rapidly at P. What is the rate of change of f in this direction?
- (d) Find a unit vector in the direction in which f decreases most rapidly at P. What is the rate of change of f in this direction?
- (e) Find a direction in which the directional derivative is zero. How does this direction relate to level curves of f?

7. Tangent plane and implicit derivatives.

Let $F(x, y, z) = x^2 - 2y^3 - 3z^4$.

- (a) Find the equation of the tangent plane to the surface F(x, y, z) = 0 at the point P = (4, 2, 0).
- (b) The surface F=0 implicitly defines a function z(x,y) near P. Find $\frac{\partial z}{\partial x}|_{P}$ and $\frac{\partial z}{\partial y}|_{P}$. (Shortcut: they are the same for the surface and for the tangent plane.)
- (c) * Find a point on the surface F(x, y, z) = 0 where the tangent plane is parallel to the plane x + 3y 6z = 18. What is the equation of the tangent plane at that point? Is your point unique? If so, why? If not, what other points work?

8. Tangent plane to ellipsoid.

Show that the equation of the tangent plane to the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

at the point (x_0, y_0, z_0) can be written in the form

$$\frac{x_0x}{a^2} + \frac{y_0y}{b^2} + \frac{z_0z}{c^2} = 1.$$