NAME:	 			
TA's NAME:				

Calculators Okay!

Problem	Score
1	
2	
3	
4	
Total	

SHOW YOUR WORK!

1. Use Laplace transforms to solve the ordinary differential equation

$$y'' + 9y = g(t), \ y(0) = 0, \ y'(0) = 0$$

where

$$g(t) = \begin{cases} 0 & 0 \le t \le 10 ,\\ \frac{(t-10)}{10}, & 10 \le t < 20 ,\\ 1 & 20 < t . \end{cases}$$

(20 pts)
` • /

2. Solve using Laplace transforms

$$2y'' + y' + 4y = \delta(t - \frac{\pi}{6})\cos t,$$

$$y(0) = 0, y'(0) = 0.$$

 $(\sin \frac{\pi}{6} = \frac{1}{2}, \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2})$ where δ is the unit impulse function.

ANS.				
				(30 pts)
				-

3. Find the Laplace transform of

$$\int_0^t (t-\tau)\cos 2\tau d\tau.$$

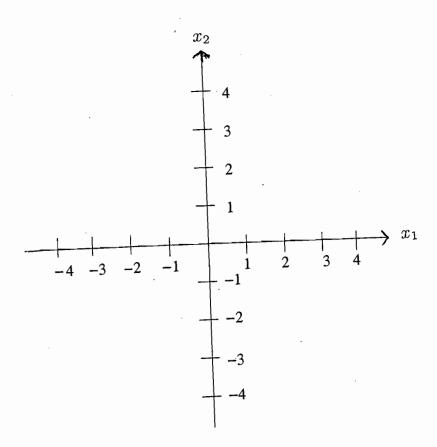
ANS.		 _	
			(10 pts)
			, ,

4. (a) Use the eigenvalue – eigenvector method to find the general solution of

$$\mathbf{x}' = \begin{bmatrix} 1 & -2 \\ & \\ 3 & -4 \end{bmatrix} \mathbf{x}.$$

ANS.

(20 pts)


(b) Use the result in (a) to solve the initial value problem with

$$\mathbf{x}(0) = \begin{bmatrix} 4 \\ 4 \end{bmatrix}.$$

ANS.

(10 pts)

(c) Use your result in (a) to plot a few trajectories in the x_1 , x_2 plane. Use arrows to denote increasing t.

(10 pts)